Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Microbiol Res ; 282: 127631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330818

RESUMO

Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (ß-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.


Assuntos
Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Humanos , Pré-Escolar , Salmonella typhimurium/genética , Antibacterianos/farmacologia , Sorogrupo , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Infecções por Salmonella/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
3.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338341

RESUMO

Medicinal plants are considered a major source for discovering novel effective drugs. To our knowledge, no studies have reported the chemical composition and biological activities of Moroccan Lactuca saligna extracts. In this context, this study aims to characterize the polyphenolic compounds distributed in hydro-methanolic extracts of L. saligna and evaluate their antioxidant and antibacterial activities; in addition, in silico analysis based on molecular docking and ADMET was performed to predict the antibacterial activity of the identified phenolic compounds. Our results showed the identification of 29 among 30 detected phenolic compounds with an abundance of dicaffeoyltartaric acid, luteolin 7-glucoronide, 3,5-di-O-caffeoylquinic acid, and 5-caffeoylquinic acid with 472.77, 224.30, 196.79, and 171.74 mg/kg of dried extract, respectively. Additionally, antioxidant activity assessed by DPPH scavenging activity, ferric reducing antioxidant power (FRAP) assay, and ferrous ion-chelating (FIC) assay showed interesting antioxidant activity. Moreover, the results showed remarkable antibacterial activity against Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes with minimum inhibitory concentrations between 1.30 ± 0.31 and 10.41 ± 0.23 mg/mL. Furthermore, in silico analysis identified three compounds, including Apigenin 7-O-glucuronide, Quercetin-3-O-glucuronide, and 3-p-Coumaroylquinic acid as potent candidates for developing new antibacterial agents with acceptable pharmacokinetic properties. Hence, L. saligna can be considered a source of phytochemical compounds with remarkable activities, while further in vitro and in vivo studies are required to explore the main biological activities of this plant.


Assuntos
Antioxidantes , Lactuca , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Glucuronídeos/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/análise , Fenóis/farmacologia , Componentes Aéreos da Planta/química
5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895922

RESUMO

Throughout history, spices have been employed for their pharmaceutical attributes and as a culinary enhancement. The food industry widely employs artificial preservatives to retard the deterioration induced by microbial proliferation, enzymatic processes, and oxidative reactions. Nevertheless, the utilization of these synthetic preservatives in food products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. These risks encompass a spectrum of adverse effects, including but not limited to gastrointestinal disorders, the disruption of gut microbiota, allergic reactions, respiratory complications, and concerns regarding their carcinogenic properties. Consequently, consumers are displaying an increasing reluctance to purchase preserved food items that contain such additives. Spices, known for their antimicrobial value, are investigated for their potential as food preservatives. The review assesses 25 spice types for their inherent antimicrobial properties and their applicability in inhibiting various foodborne microorganisms and suggests further future investigations regarding their use as possible natural food preservatives that could offer safer, more sustainable methods for extending shelf life. Future research should delve deeper into the use of natural antimicrobials, such as spices, to not only replace synthetic preservatives but also optimize their application in food safety and shelf-life extension. Moreover, there is a need for continuous innovation in encapsulation technologies for antimicrobial agents. Developing cost-effective and efficient methods, along with scaling up production processes, will be crucial to competing with traditional antimicrobial options in terms of both efficacy and affordability.

6.
Int J Food Microbiol ; 390: 110120, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-36758302

RESUMO

Salmonella is one of the most common causes of foodborne bacterial disease. Animal-borne foods are considered the primary sources of Salmonella transmission to humans. However, genomic assessment of antimicrobial resistance (AMR) and virulence of Salmonella based on One Health approach remains obscure in China. For this reason, we analyzed the whole genome sequencing data of 134 Salmonella isolates recovered from different animal and meat samples in China. The 134 Salmonella were isolated from 2819 samples (4.75 %) representing various sources (pig, chicken, duck, goose, and meat) from five Chinese provinces (Zhejiang, Guangdong, Jiangxi, Hunan, and Qinghai). AMR was evaluated by the broth dilution method using 13 different antimicrobial agents, and results showed that 85.82 % (115/134) of isolates were resistant to three or more antimicrobial classes and were considered multidrug-resistant (MDR). Twelve sequence types (STs) were detected, with a dominance of ST469 (29.85 %, 40/134). The prediction of virulence genes showed the detection of cdtB gene encoding typhoid toxins in one isolate of S. Muenster recovered from chicken, while virulence genes associated with type III secretion systems were detected in all isolates. Furthermore, plasmid-type prediction showed the abundance of IncFII(S) (13/134; 9.7 %) and IncFIB(S) (12/134; 8.95 %) in the studied isolates. Together, this study demonstrated the ability to use whole-genome sequencing (WGS) as a cost-effective method to provide comprehensive knowledge about foodborne Salmonella isolates in One Health surveillance approach.


Assuntos
Doenças Transmitidas por Alimentos , Saúde Única , Salmonella enterica , Humanos , Animais , Suínos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella , Doenças Transmitidas por Alimentos/microbiologia , Testes de Sensibilidade Microbiana
7.
Crit Rev Food Sci Nutr ; 63(32): 11244-11262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35694810

RESUMO

Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.


Assuntos
Lactobacillales , Probióticos , Animais , Humanos , Lactobacillales/genética , Bactérias/genética , Virulência , Sequenciamento Completo do Genoma
8.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359876

RESUMO

Antimicrobial-resistant (AMR) pathogens are a significant threat to public health worldwide. However, the primary carrier of AMR genes, particularly against last-resort antibiotics, is still only partially studied in Chinese hospitals. In a sentinel hospital in China, we collected 157 E. coli strains from patients between January and July 2021. One blaNDM-1-, nine blaNDM-5-, and one mcr-1-positive E. coli recovered from inpatients were identified as resistant to meropenem and colistin. There are 37 virulence genes discovered in the 11 strains, including astA in strain EC21Z-147 (O128: H4), which belongs to the enteroaggregative E. coli (EAEC). The blaNDM gene is distributed into distinct ST types, including ST48, ST616, ST410, ST711, and ST2003, while the mcr-1 gene was identified in ST117. The conjugative plasmids IncX3, IncI1-I, and IncI2 mediated the blaNDM-5 and mcr-1 genes detected among inpatients. Notably, the youngest age at which mcr-1-positive E. coli has been reported was at one day old, in a child in which the strain is closely related to strains with animal origins. Hospitals are major environments for the spread and dissemination of critical virulence and AMR genes, which requires active monitoring systems at the genome level to surveil the spread of virulence and AMR.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Colistina/farmacologia , Escherichia coli/genética , Carbapenêmicos/farmacologia , Proteínas de Escherichia coli/genética , beta-Lactamases/genética , Plasmídeos , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/tratamento farmacológico , Hospitais
9.
Int J Food Microbiol ; 383: 109960, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36209539

RESUMO

In this work, the chemical composition of Thymus zygis subsp. gracilis collected from Ifrane, Morocco, along with the evaluation of the antibacterial, anti-biofilm of Listeria monocytogenes activities, larvicidal effect against L3 larvae of Anisakis, and antioxidant properties of its essential oil (TZG-EO), are reported. GC-MS and GC-FID analyses highlighted the presence of 84 volatile components and strong bactericidal and anti-biofilm activities against L. monocytogenes at a concentration of 0.02 % were demonstrated. Also, larvicidal effect against Anisakis larvae at concentrations of 0.01 and 0.005 % was attained leading to the death of all tested larvae within 4 h. The in situ antibacterial activity of TZG-EO (0.01 and 0.005 %) in smoked fish showed high efficiency against L. monocytogenes growth. TZG-EO could be used as potential antibacterial and larvicidal agents for fighting against foodborne pathogens and extending shelf life of food products.


Assuntos
Lamiaceae , Listeria monocytogenes , Óleos Voláteis , Thymus (Planta) , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Thymus (Planta)/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
10.
Front Public Health ; 10: 988317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176509

RESUMO

Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, ß-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella , Salmonella , Aminoglicosídeos/farmacologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Cefazolina/farmacologia , Doxiciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Pacientes Ambulatoriais , Salmonella/efeitos dos fármacos , Salmonella/genética , Salmonella/isolamento & purificação , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Estreptomicina/farmacologia , Tetraciclina/farmacologia
11.
Front Immunol ; 13: 973224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032095

RESUMO

The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1ß and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.


Assuntos
Lacticaseibacillus rhamnosus , Microbiota , Infecções por Salmonella , Animais , Galinhas , Inflamação , RNA Ribossômico 16S , Salmonella typhimurium
12.
J Hazard Mater ; 438: 129476, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809365

RESUMO

To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Salmonella , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fazendas , Salmonella/efeitos dos fármacos , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/fisiologia , Sorogrupo , Estresse Fisiológico
13.
Microbiol Spectr ; 10(4): e0096522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727054

RESUMO

Paratyphoid avian salmonellosis is considered one of the leading causes of poultry death, resulting in significant economic losses to poultry industries worldwide. In China, especially in Shandong province, the leading producer of poultry products, several recurrent outbreaks of avian salmonellosis have been reported during the last decade where the precise causal agent remains unknown. Moreover, the establishment of earlier and more accurate recognition of pathogens is a key factor to prevent the further dissemination of resistant and/or hypervirulent clones. Here, we aim to use whole-genome sequencing combined with in silico toolkits to provide the genomic features of the antimicrobial resistance and virulence potential of 105 regionally representative non-Pullorum/Gallinarum Salmonella isolates recovered from dead poultry between 2008 and 2019 in Shandong, China. Additionally, phenotypic susceptibility to a panel of 15 antibiotics representing 11 classes was assessed by the broth microdilution method. In this study, we identified eight serovars and nine multilocus sequence typing (MLST) types, with Salmonella enterica serovar Enteritidis sequence type 11 (ST11) being the most prevalent (84/105; 80%). Based on their phenotypic antimicrobial resistance, 77.14% of the isolates were defined as multidrug resistant (≥3 antimicrobial classes), with the detection of one S. Enteritidis isolate that was resistant to the 11 classes. The highest rates of resistance were observed against nalidixic acid (97.14%) and ciprofloxacin (91.43%), followed by ampicillin (71.43%), streptomycin (64.77%), and tetracycline (60%). Genomic characterization revealed the presence of 41 resistance genes, with an alarmingly high prevalence of blaTEM-1B (60%), in addition to genomic mutations affecting the DNA gyrase (gyrA) and DNA topoisomerase IV (parC) genes, conferring resistance to quinolones. The prediction of plasmid replicons detected 14 types, with a dominance of IncFIB(S)_1 and IncFII(S)_1 (87.62% for both), while the IncX1 plasmid type was considered the key carrier of antimicrobial resistance determinants. Moreover, we report the detection of critical virulence genes, including cdtB, rck, sodCI, pef, and spv, in addition to the typical determinants for Salmonella pathogenicity island 1 (SPI-1) and SPI-2. Furthermore, phylogenomic analysis revealed the detection of three intra-farm and five inter-farm transmission events. Overall, the detection of Salmonella isolates presenting high antimicrobial resistance and harboring different critical virulence genes is of major concern, which requires the urgent implementation of effective strategies to mitigate non-Pullorum/Gallinarum avian salmonellosis. IMPORTANCE Avian salmonellosis is one of the leading global causes of poultry death, resulting in substantial economic losses in China (constituting 9% of overall financial losses). In Shandong province, a top poultry producer (30% of the overall production in China, with 15% being exported to the world), extensive outbreaks of avian salmonellosis have been reported in the past decade where the causal agents or exact types remain rarely addressed. From approximately 2008 to 2019, over 2,000 Salmonella strains were isolated and identified from dead poultry during routine surveillance of 95 poultry farms covering all 17 cities in Shandong. Approximately 1,500 isolates were confirmed to be of non-Pullorum/Gallinarum Salmonella serovars. There is an urgent need to understand the mechanisms behind the implication of zoonotic Salmonella serovars in systemic infections of poultry. Here, we analyzed populations of clinically relevant isolates of non-Pullorum/Gallinarum Salmonella causing chicken death in China by a whole-genome sequencing approach and determined that antimicrobial-resistant Salmonella Enteritidis remained the major cause in the past decades.


Assuntos
Doenças das Aves Domésticas , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Galinhas , Farmacorresistência Bacteriana/genética , Tipagem de Sequências Multilocus , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Salmonella , Salmonelose Animal/epidemiologia , Salmonella enterica/genética , Salmonella enteritidis , Sorogrupo , Virulência/genética
14.
Int J Food Microbiol ; 366: 109572, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176609

RESUMO

Listeria monocytogenes remains a significant public health threat, leading to invasive listeriosis with severe manifestations (i.e. septicemia, meningitis, and abortion) and up to 30% of fatal cases. Here, we aimed to investigate genotypic diversity, virulence profiles, antimicrobial resistance patterns from a large and integrated population of L. monocytogenes isolates in China (n = 369), including food (n = 326), livestock (n = 25), and hospitalized humans (n = 18) over the years (2002-2019). PCR-based serogrouping showed the dominance of serogroup 1/2a-3a (37.4%) in food, 4a-4c (76%) in livestock, and 1/2a-3a (44.4%) in humans. Phylogenetic lineage analysis revealed the dominance of lineage II (63.4%) in food, lineage III (76%) in livestock, and lineage II (55.5%) in humans. Altogether, 369 isolates were grouped into 55 sequence types (STs) via multi-locus sequence typing (MLST), which belonged to 26 clonal complexes (CCs) and 17 singletons. Among various STs, ST9 (26%) was the most abundant in food, ST202 (76%) in livestock, and ST8 (16.6%) in humans. Overall, ST4/CC4, ST218/CC218, and ST619 isolates harbored both LIPI-3 and LIPI-4 genes subsets indicating their hypervirulence potential. Additionally, a low resistance was observed towards tetracycline (5.1%), erythromycin (3.2%), cotrimoxazole (2.9%), chloramphenicol (2.7%), gentamicin (2.4%), and ampicillin (2.1%). Collectively, detection of hypervirulent determinants and antimicrobial-resistant phenotype among Chinese isolates poses an alarming threat to food safety and public health, which requires a continued and enhanced surveillance system for further prevention of human listeriosis.


Assuntos
Farmacorresistência Bacteriana , Listeria monocytogenes , Animais , Antibacterianos/farmacologia , China/epidemiologia , Microbiologia de Alimentos , Variação Genética , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/veterinária , Gado/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Fatores de Virulência/genética
15.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680737

RESUMO

Salmonella continues to be a major food and public health burden worldwide that can threaten human health via eating contaminated meats, particularly those originating from chicken. In this study, the antimicrobial resistance profiles, epidemiological characteristics of resistance genes, and pulsed field gel electrophoresis (PFGE-XbaI) typing of 120 non-Pullorum/Gallinarum Salmonella isolates recovered from chicken embryos in Henan province were determined. The antimicrobial resistant phenotypes and evaluation of the extended-spectrum beta-lactamases (ESBLs) producing strains of Salmonella were investigated by the Kirby-Bauer test and the double-disk synergy test. Additionally, 37 antimicrobial resistance genes encoding resistance to five different categories, including aminoglycosides, cephalosporins, sulphonamides, tetracyclines, and ß-lactams, were examined by conventional PCR. However, genotyping analysis was conducted by macro-restriction using enzyme XbaI followed by the separation of the restricted DNA fragments by PFGE. The results of this study showed that the studied Salmonella strains were highly resistant to ampicillin (66.67%) and sulfisoxazole (66.67%), while they were all susceptible to meropenem, imipenem, colistin, and chloramphenicol. Additionally, 67.5% (81/120) of the studied strains were multidrug resistant, and 21.67% (26/120) were phenotypically confirmed as ESBLs positive. The statistical analysis showed that resistance depends on the serovars, and ESBLs positive strains showed more multi-resistance than ESBLs negative strains (p < 0.05). The genotypic antimicrobial resistance showed the detection of 14 among the 37 tested genes, and the concordance between genotypic and phenotypic antimicrobial resistance ranged from 0% to 100% depending on the serovars. However, the PFGE-XbaI typing results showed that the examined Salmonella strains were divided into 22 individual subtypes and were grouped in nine clusters, with similarity values ranging from 64.7% to 100%. From this study, we can conclude that the antimicrobial resistance of Salmonella serovars isolated from chicken embryos in Henan province was alarming, with rigorous multidrug resistance, which requires the urgent mitigation of the use of antimicrobial drugs in chicken hatcheries. Additionally, our results showed evidence of the presence of different PFGE patterns among the studied Salmonella serovars, suggesting the presence of different sources of contamination.

16.
Adv Pharmacol Pharm Sci ; 2021: 7533938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195613

RESUMO

The aim of this study is to investigate the in vitro antioxidant, antidiabetic, and antibacterial activities of Moroccan and Italian Crocus sativus (L.) stigmas extracts. The antioxidant activity was evaluated by DPPH radical scavenging assay, and the results showed that the Moroccan extract has a powerful antioxidant activity with an IC50 of 0.32 ± 0.059 µg/mL compared to the Italian extract (IC50 of 3.14 ± 0.021 µg/mL). Additionally, the antidiabetic activity was evaluated by using alpha-amylase and alpha-glucosidase inhibition assay, and both extracts showed significant antidiabetic activity. However, the antibacterial activity was evaluated by the disc diffusion method to determine the inhibitory diameters and microplate dilutions method to determine the minimum inhibitory concentration. Our findings revealed that both Moroccan and Italian extracts were more effective against Gram-positive than Gram-negative bacteria. From this study, we can conclude that the studied extracts of C. sativus are rich in natural compounds and could have a broad application in the pharmaceutical, food, and medical fields.

17.
Front Microbiol ; 12: 704636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305874

RESUMO

The pig industry is the principal source of meat products in China, and the presence of pathogens in pig-borne meat is a crucial threat to public health. Salmonella is the major pathogen associated with pig-borne diseases. However, route surveillance by genomic platforms along the food chain is still limited in China. Here, we conducted a study to evaluate the dynamic prevalence of Salmonella in a pig slaughtering process in Hangzhou, Zhejiang Province, China. Fifty-five of 226 (24.37%) samples were positive for Salmonella; from them, 78 different isolates were selected and subjected to whole genome sequencing followed by bioinformatics analyses to determine serovar distribution, MLST patterns, antimicrobial resistance genes, plasmid replicons, and virulence factors. Moreover, phenotypic antimicrobial resistance was performed using the broth dilution method against 14 antimicrobial agents belonging to 10 antimicrobial classes. Our results showed that samples collected from the dehairing area (66.66%) and the splitting area (57.14%) were the most contaminated. Phenotypic antimicrobial resistance classified 67 of 78 isolates (85.90%) as having multidrug resistance (MDR), while the highest resistance was observed in tetracycline (85.90%; 67/78) followed by ampicillin (84.62%; 66/78), chloramphenicol (71.80%; 56/78), and nalidixic acid (61.54%; 48/78). Additionally, serovar prediction showed the dominance of Salmonella Typhimurium ST19 (51.28%; 40/78) among the 78 studied isolates, while plasmid prediction reported the dominance of IncHI2A_1 (20.51%; 16/78), followed by IncX1_1 (17.95%; 14/78) and IncHI2_1 (11.54%; 9/78). Virulence factor prediction showed the detection of cdtB gene encoding typhoid toxins in two Salmonella Goldcoast ST358 and one Salmonella Typhimurium ST19, while one isolate of Salmonella London ST155 was positive for genes encoding for the siderophore "yersiniabactin" and the gene senB encoding for enterotoxin production. From this study, we conclude that pig slaughterhouses are critical points for the dissemination of virulent and multidrug-resistant Salmonella isolates along the food chain which require the implementation of management systems to control the critical points. Moreover, there is an urgent need for the implementation of the whole genome sequencing platform to monitor the emergence of virulent and multidrug-resistant clones along the food chain.

18.
Food Res Int ; 142: 110198, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33773671

RESUMO

Salmonella is a major foodborne pathogen worldwide, causing serious cases of morbidity and mortality due to the consumption of contaminated foods. Animal-borne foods were considered the main source of transferring Salmonella to humans; however, route surveillance by genomic platforms along the food-chain is limited in China. Here, we proceeded to the application of whole genome sequencing in the epidemiological analysis of Salmonella isolated along the food-chain in Xinjiang, China. A total of 2408 samples were collected from farms, slaughterhouses, and markets, and subjected to the isolation of Salmonella strains. 314 (13.04%) of the samples were positive for Salmonella. Phenotypic antimicrobial resistance was conducted by the broth dilution method using 14 antimicrobial agents belonging to ten classes for all 314 isolates. A selection of representative 103 isolates was subjected to whole-genome sequencing for understanding the Salmonella diversity, including serovars, antimicrobial and virulence genes, plasmid types, multi-locus sequence types, and allelic types. We found that S. Agona was the dominant serovar and O:4(B) was the dominant serogroup. The dominant genotype was ST13 and each serovar has a unique MLST pattern. Plasmids prediction reported Col(MGD2)_1 and Col(Ye4449)_1 as the dominant plasmids, in addition to the detection of IncFII(S)_1 and IncFIB(S)_1 carried by all S. Enteritidis isolates. Importantly, virulence genes prediction showed the presence of cdtB gene encoding typhoid toxins, spv genes, and pef gene cluster encoding fimbriae in the genomes of S. Indiana and S. Enteritidis. Phenotypic antimicrobial resistance identified 92.04% of the sampled isolates as multi-drug resistance (MDR), with high resistance to tetracycline (78.03%; 245/314), amoxicillin/ clavulanic acid (75.80%; 238/314), and ampicillin (70.70%; 222/314). Together, we firstly reported the prevalence of MDR Salmonella isolates harboring critical virulence factors transmission via animal-borne food-chain in Xinjiang, hence route surveillance by whole-genome sequencing platform could facilitate recognition and project early warning for the emerging MDR clones along the food-chain.


Assuntos
Cadeia Alimentar , Salmonella , Animais , China/epidemiologia , Genômica , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Prevalência , Salmonella/genética
19.
Heliyon ; 7(2): e06169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644461

RESUMO

Listeria monocytogenes is a pathogen contaminated food, it is the cause of listeriosis worldwide. The aims of this study were to investigate the occurrence, antimicrobial resistance, serotyping and virulence genes of L. monocytogenes isolated from foods in Meknes city of Morocco. From June 2017 to May 2018, 520 food samples were randomly collected from a traditional market and two overcrowded popular neighborhoods (Lahdim and Hamria) and subjected to the detection of L. monocytogenes. Then, the antimicrobial susceptibility of the isolated strains were evaluated using the standard disk diffusion method and the determination of serotypes and virulence genes was performed by PCR. The results showed the detection of L. monocytogenes in fifteen (2.9%) of 520 samples, including three (5.7%) isolates in traditional whey, raw minced meat and raw sausage, two (3.8%) in raw milk and one (1.9%) in smen (traditional butter), raw bovine meat, raw poultry meat and raw fish, while salads and rayeb (traditional coagulated milk) were not contaminated. Among the fifteen isolated L. monocytogenes, nine (60%) belonged to the serogroup (1/2a, 1/2c, 3a and 3c), two (13.3%) belonged to the serogroup (1/2b, 3b, 4b and 4d) and four (26.6%) do not belong to any studied serogroup. Furthermore, fifteen (100%) isolates showed the presence of actA gene, fourteen (93.3%) harbored hlyA, prfA and plcB genes, thirteen (86.7%) carried inlA and inlC genes and twelve (80%) showed inlJ gene. The antimicrobial susceptibility analysis showed that the isolated strains were more resistant to amoxicillin/clavulanic acid (67.0%), erythromycin (60.0%), sulphamethoxazole (40.0%), ampicillin and sulphamethoxazole/trimethoprim (33.0%) and tetracycline (20.0%). Furthermore, 66.7% (10/15) were multidrug-resistant. From this study, we can conclude that foods marketed in Meknes city were contaminated by multidrug-resistant strains of L. monocytogenes harboring virulence genes, which may cause a serious risk to public health.

20.
Microorganisms ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466309

RESUMO

Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA